www．xpmath．com

XP Math－Common Core State Standards Alignment Guide

Whole Numbers Math Games

䢟！
！NEW！Math Slot Machine：Multiplication
Drills
N
Math Squares－Addition \＆Multiplication

Multiply by 11 Trick

Need for Speed－Addition： 0 to 9
Need for Speed－Subtraction： 0 to 9
Wheel of Fortune－Numbers and Computation Edition
${ }^{\dagger+}$ Whole Numbers Addition Blocks
游
Whole Numbers Addition： 0 to 9
Whole Numbers Addition： 0 to 99
辝
Whole Numbers Division： 0 to 81

Whole Numbers Division： 0 to 99
${ }_{x}^{x}$
Whole Numbers Multiplication Blocks

Whole Numbers Multiplication Boxes

Whole Numbers Multiplication： 0 to 144

1
Whole Numbers Multiplication： 0 to 9

5
Whole Numbers Multiplication： 0 to 99
＇2］Whole Numbers Subtraction： 0 to 9
Whole Numbers Subtraction： 0 to 99

3．NBT． 3 Multiply one－digit whole numbers by multiples of 10 in the range 10－90（e．g．， 9×80 ， 5 $\times 60$ ）using strategies based on place value and properties of operations．

3．OA．4．Determine the unknown whole number in a multiplication or division equation relating three whole numbers．
4．OA．1．Interpret a multiplication equation as a comparison，e．g．，interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 ．Represent verbal statements of multiplicative comparisons as multiplication equations．
2．OA．2．Fluently add and subtract within 20 using mental strategies．
2．OA．2．Fluently add and subtract within 20 using mental strategies
Operations \＆Algebraic Thinking，Number \＆Operations in Base Ten
2．OA．2．Fluently add and subtract within 20 using mental strategies．
2．OA．2．Fluently add and subtract within 20 using mental strategies．
4．NBT．4．Fluently add and subtract multi－digit whole numbers using the standard algorithm．
3．OA．7．Fluently multiply and divide within 100 ，using strategies such as the relationship between multiplication and division（e．g．，knowing that $8 \times 5=40$ ，one knows $40 \div 5=8$ ）or properties of operations．
3．OA．7．Fluently multiply and divide within 100 ，using strategies such as the relationship between multiplication and division（e．g．，knowing that $8 \times 5=40$ ，one knows $40 \div 5=8$ ）or properties of operations．
3．OA．7．Fluently multiply and divide within 100，using strategies such as the relationship between multiplication and division（e．g．，knowing that $8 \times 5=40$ ，one knows $40 \div 5=8$ ）or properties of operations．
3．OA．7．Fluently multiply and divide within 100 ，using strategies such as the relationship between multiplication and division（e．g．，knowing that $8 \times 5=40$ ，one knows $40 \div 5=8$ ）or properties of operations．
3．OA．7．Fluently multiply and divide within 100 ，using strategies such as the relationship between multiplication and division（e．g．，knowing that $8 \times 5=40$ ，one knows $40 \div 5=8$ ）or properties of operations．
3．OA．7．Fluently multiply and divide within 100 ，using strategies such as the relationship between multiplication and division（e．g．，knowing that $8 \times 5=40$ ，one knows $40 \div 5=8$ ）or properties of operations．
3．OA．7．Fluently multiply and divide within 100 ，using strategies such as the relationship between multiplication and division（e．g．，knowing that $8 \times 5=40$ ，one knows $40 \div 5=8$ ）or properties of operations．
2．OA．2．Fluently add and subtract within 20 using mental strategies．
4．NBT．4．Fluently add and subtract multi－digit whole numbers using the standard algorithm．

Order of Operations Math Games

［18
Call of Hierarchy：Black Order of Operations

T⿵冂⿱一口犬亍保 Order of Operations

5．OA．1．Use parentheses，brackets，or braces in numerical expressions，and evaluate expressions with these symbols．
5．OA．1．Use parentheses，brackets，or braces in numerical expressions，and evaluate expressions with these symbols．
6．EE．1．Write and evaluate numerical expressions involving whole－number exponents．

Fractions，Decimals，Percents Math Games

4．NF．5．Express a fraction with denominator 10 as an equivalent fraction with denominator 100， and use this technique to add two fractions with respective denominators 10 and 100.2 For example，express $3 / 10$ as $30 / 100$ ，and add $3 / 10+4 / 100=34 / 100$ ．
4．NF．6．Use decimal notation for fractions with denominators 10 or 100 ．For example，rewrite 0.62 as $62 / 100$ ；describe a length as 0.62 meters；locate 0.62 on a number line diagram．

4．NF．2．Compare two fractions with different numerators and different denominators，e．g．，by creating common denominators or numerators，or by comparing to a benchmark fraction such as $1 / 2$ ．Recognize that comparisons are valid only when the two fractions refer to the same whole． Record the results of comparisons with symbols $>,=$ ，or $<$ ，and justify the conclusions，e．g．，by using a visual fraction model．

Converting Decimals to Percents: 0 to 1 rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically.
Converting Decimals to Percents: 0 to 2 Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

Converting Improper Fractions to Mixed Numbers
[4] Converting Mixed Numbers to Improper Fractions

C Converting Percents to Decimals: 0\% to 100\%

Converting Percents to Decimals: 0% to 200\%Decimals Addition: 0.0 to 9.0
Decimals Division: By Tenths
Decimals Multiplication: By TenthsDecimals Subtraction: 0.0 to 9.0

!NEW! Fraction Vault Multiplier: Equivalent Fraction Models
[1/2 Fractions Addition: Fractions with Common Denominators

固 Fractions Division
x_{2}^{7} Fractions Multiplication
[-1] Fractions Subtraction: Fractions with Common Denominators

Percent Circle
5.NF.6. Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
5.NF.3. Interpret a fraction as division of the numerator by the denominator ($a / b=a \div b$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
7.EE.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
4.NF.A. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. FOR ENTERTAINMENT PURPOSES ONLY. NO PRIZES AWARDED.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
6.RP.3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
Wheel of Fortune - Fractions, Decimals \& Ratios \& Proportional Relationships, The Number System
Percents Edition

Integers Math Games

6.NS.7. Understand ordering and absolute value of rational numbers.
6.NS.5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract
rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line

diagram.

7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

Space Race - Comparing Integers
6.NS.6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.

Other Math Games

Coins Mystery

King Kong's Prime Numbers
!NEW! Kung Fu Factor - Prime Factorization

Number Catch - Multiples of 2

Primes Vs. Composites: Divisibility Rules

Square Root Cannon
8.EE.1. Know and apply the properties of integer exponents to generate equivalent numerical expressions.
5.MD.1. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
6.NS.4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$. Apply and extend previous understandings of numbers to the system of rational numbers.
4.OA.4. Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.
4.OA.4. Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range 1-100 is prime or composite.
6.NS.4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor.
8.NS.2. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.

Press and Hold UP and DOWN to rotate cannon
Press and Hold LEFT and RIGHT to aim missile while it's in the air

Algebra Math Games

Circle Addition Equation
6.EE.5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
6.EE.6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
6.EE.5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Factoring Trinomials

!NEW! Functions Rates of Change: Odd One Out

3
Halo: Slope
(1)

```
Inequality Wars
```

[気 Like Terms Invaders
E(
Math Payne: The Function of Math Payne

One Step Equations Pong

Solving Addition Equations

Solving Division Equations
Solving Multiplication Equations

Solving Proportions

Solving Subtraction Equations

Solving Two-Step Equations

A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
8.F. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.EE.5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
7.EE.4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
6.EE.3. Apply the properties of operations to generate equivalent expressions.
8.F.1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
6.EE.5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.
6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.
6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.
6.RP.3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.
7.EE.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

Geometry Math Games

Call of Geometry: Quadrilateral Warfare

Finding Areas of Parallelograms

Finding Perimeters of Parallelograms

Geometric Shapes Avoider - Triangle, Square, Pentagon

Homer's Donuts Coordinates

Metroid Coordinates!NEW! Portal Transformation
Soccer CoordinatesWheel of Fortune - Geometry Edition
5.G.3. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
5.G.4. Classify two-dimensional figures in a hierarchy based on properties.
6.G.1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
3.MD.8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
5.G.4. Classify two-dimensional figures in a hierarchy based on properties.
6.NS.6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
6.NS.6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
8.G.A. 1 Verify experimentally the properties of rotations, reflections, and translations
6.NS.6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
Geometry

Measurement Math Games

Complementary and Supplementary Angle Pairs Memory Match

Complementary and Supplementary Angle Pairs Practice
7.G.5. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
7.G.5. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

Abstract

8.EE.4. Perform operations with numbers expressed in scientific notation, including problems

Converting Large Numbers into Scientific Notation where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. 8.EE.4. Perform operations with numbers expressed in scientific notation, including problems

Converting Small Numbers into Scientific Notation *) Flip Card - Angle Types (1) Helicopter Shootdown - Tank Angle Measurement

3 !nEW! Minecraft Volume: Rectangular Prism - UFO Attack - Space Angle Measurement where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. 4.MD.5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: *An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles. *An angle that turns through n one-degree angles is said to have an angle measure of n degrees. 4.MD.6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. 5.MD. 4 Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units. "Minecraft" is a trademark of Notch Development AB 4.MD.6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.

Probability Math Games
[(i) Deal or No Deal

73 Guess the Number $-1,000$ to 1,000
Guess the Number 0 to 100
8. Math Effect Two Dice Sum Probability

Number Sets Roulette

5
Plinko Probability - The Probability is Right

Probability - Starfish

Roll Back Number Line
7.SP.5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
6.SP.2. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
6.SP.2. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
7.SP.6. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.
7.SP.7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
6.NS.5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values
6.NS.6. Understand a rational number as a point on the number line.
8.NS.1. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.NS.2. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions
7.SP.5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP.5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
6.NS.5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
7.SP.6. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.
7.SP.7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

